MR3D-Net: Dynamic Multi-Resolution 3D Sparse Voxel Grid Fusion for LiDAR-Based Collective Perception
In 2024 IEEE Intelligent Transportation Systems Conference (IEEE ITSC 2024), 2024.
Keywords: Collective Perception, Data Fusion, LiDAR-Based Object Detection
Abstract
The safe operation of automated vehicles depends on their ability to perceive the environment comprehensively. However, occlusion, sensor range, and environmental factors limit their perception capabilities. To overcome these limitations, collective perception enables vehicles to exchange information. However, fusing this exchanged information is a challenging task. Early fusion approaches require large amounts of bandwidth, while intermediate fusion approaches face interchangeability issues. Late fusion of shared detections is currently the only feasible approach. However, it often results in inferior performance due to information loss. To address this issue, we propose MR3D-Net, a dynamic multi-resolution 3D sparse voxel grid fusion backbone architecture for LiDAR-based collective perception. We show that sparse voxel grids at varying resolutions provide a meaningful and compact environment representation that can adapt to the communication bandwidth. MR3D-Net achieves state-of-the-art performance on the OPV2V 3D object detection benchmark while reducing the required bandwidth by up to 94% compared to early fusion. Code is available at https://github.com/ekut-es/MR3D-Net